Symphonic-Joules

![Symphonic-Joules Header](/Symphonic-Joules/assets/typing-header.svg) [![CI](https://github.com/JaclynCodes/Symphonic-Joules/workflows/CI/badge.svg)](https://github.com/JaclynCodes/Symphonic-Joules/actions/workflows/blank.yml) [![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Testing Rigor](https://img.shields.io/badge/testing-comprehensive-brightgreen.svg)](tests/) [![Scientific Phase](https://img.shields.io/badge/phase-foundation-blue.svg)](#-roadmap)

πŸ”¬ Scientific North Star

At the heart of Symphonic-Joules lies the acoustic energy density equation, which governs how sound carries energy through space:

### **w = p² / (2ρc²) + ρv² / 2** Where: - **w** = acoustic energy density (J/m³) - **p** = sound pressure (Pa) - **ρ** = medium density (kg/m³) - **c** = speed of sound (m/s) - **v** = particle velocity (m/s) *This fundamental relationship bridges acoustics and energy, guiding our computational approach.*

🎡 Mission

A project that harmonizes the worlds of sound and energy through innovative computational approaches, providing tools and insights that bridge the gap between acoustics and physics.


🌊 Data Flow Architecture

graph LR
    A[Audio Input<br/>WAV/MP3/FLAC] --> B[Signal Processing]
    B --> C[Feature Extraction]
    C --> D{Analysis Type}
    D -->|Frequency| E[FFT/STFT]
    D -->|Time| F[Waveform Analysis]
    D -->|Energy| G[Acoustic Energy Calc]
    E --> H[Energy Density Computation]
    F --> H
    G --> H
    H --> I[Energy Output<br/>Joules/Watts]
    I --> J[Visualization]
    J --> K[Results Dashboard]
    
    style A fill:#e1f5ff
    style I fill:#fff4e1
    style K fill:#e8f5e9
    style H fill:#f3e5f5

This diagram illustrates the transformation pipeline from raw audio signals to quantified energy measurements.


πŸ“‹ Table of Contents


🎡 Overview

Symphonic-Joules is an open-source project that explores the intersection of audio processing and energy calculations. Whether you’re working with sound waves, musical compositions, or energy transformations, this project aims to provide tools and insights that bridge the gap between acoustics and physics.

Mission: To create an extensible, scientifically-grounded framework for analyzing the energetic properties of sound and the sonic properties of energy systems.


πŸ’» Interface-First Design

Symphonic-Joules follows an interface-first philosophy, where API design drives implementation. Below is the intended API showcasing how users will interact with the framework:

Core Interfaces

from symphonic_joules import AudioSignal, EnergyCalculator

# Load and represent an audio signal
signal = AudioSignal.from_file("symphony.wav")

# Access signal properties
print(f"Duration: {signal.duration}s")
print(f"Sample Rate: {signal.sample_rate}Hz")
print(f"Channels: {signal.channels}")

# Calculate acoustic energy density
calculator = EnergyCalculator(
    medium_density=1.225,  # kg/mΒ³ (air at 20Β°C)
    sound_speed=343.0      # m/s (air at 20Β°C)
)

# Compute energy metrics
energy_density = calculator.compute_energy_density(signal)
total_energy = calculator.compute_total_energy(signal)
power = calculator.compute_average_power(signal)

print(f"Energy Density: {energy_density:.6f} J/mΒ³")
print(f"Total Energy: {total_energy:.6f} J")
print(f"Average Power: {power:.6f} W")

# Advanced: Frequency-domain energy analysis
freq_energy = calculator.energy_spectrum(signal)
freq_energy.plot(title="Energy Distribution by Frequency")

Design Principles

  1. Explicit over Implicit: Clear parameter names and units
  2. Type Safety: Strong typing with validation
  3. Scientific Accuracy: All calculations reference physics literature
  4. Composability: Modular components that work together seamlessly
  5. Performance: Efficient algorithms optimized for real-time processing

This API is aspirational and drives our development roadmap.


✨ Features

Current (Phase 1: Foundation)

Coming Soon (Phase 2: Analysis)

Future (Phase 3: Visualization)


πŸš€ Quick Start

Prerequisites

Installation

# 1. Clone the repository
git clone https://github.com/JaclynCodes/Symphonic-Joules.git
cd Symphonic-Joules

# 2. Create and activate a virtual environment (recommended)
python -m venv venv

# On Windows:
venv\Scripts\activate

# On Unix/macOS:
source venv/bin/activate

# 3. Install the package in development mode
pip install -e .

# 4. Install development dependencies (optional, for contributors)
pip install -e ".[dev]"

Verify Installation

# Run the test suite to verify installation
python -m pytest tests/ -v

# Check package version (note: Python package uses underscores, not hyphens)
python -c "import symphonic_joules; print(symphonic_joules.__version__)"

For detailed installation instructions, troubleshooting, and platform-specific guidance, see docs/installation-setup.md.

πŸ’‘ Usage Examples

Python API

Currently, Symphonic-Joules provides a Python API for audio and energy computations. The package is designed to be imported and used programmatically.

Note: The Python package name uses underscores (symphonic_joules) following Python naming conventions, while the repository and project name use hyphens (Symphonic-Joules).

# Import the package (note: use underscores in Python)
import symphonic_joules

# Check version
print(f"Symphonic-Joules v{symphonic_joules.__version__}")

# Future usage examples will include:
# - Loading and processing audio files
# - Computing energy transformations
# - Analyzing frequency domain properties
# - Visualizing acoustic and energetic data

Planned CLI Interface

A command-line interface (joule) is planned for future releases to provide easy access to core functionality:

# Planned CLI commands (coming soon):
# joule process-audio <input.wav> --output <output.wav>
# joule analyze-energy <audio-file>
# joule list-filters
# joule convert --format mp3 <input>

For more examples and tutorials, see docs/examples/ and docs/getting-started.md.


πŸ§ͺ Testing Philosophy: Documentation-as-Code

Symphonic-Joules employs a unique Documentation-as-Code approach where tests validate not just code functionality, but also documentation accuracy. This ensures our documentation never drifts from reality.

The Validation Loop

Code Implementation β†’ Documentation β†’ Automated Tests β†’ Validation
         ↑                                                  ↓
         └──────────────── Feedback Loop β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

How It Works

Our test suite includes meta-tests that validate documentation itself:

# From tests/test_readme_validation.py
class TestREADMEStructure:
    """Validates README has required sections"""
    
    def test_has_overview_section(self, readme_content):
        assert '## Overview' in readme_content
    
    def test_has_dependencies_section(self, readme_content):
        assert '## Dependencies' in readme_content

class TestTestCountAccuracy:
    """Ensures documented test counts match actual implementation"""
    
    def test_total_test_count_is_accurate(self, readme_content, actual_test_count):
        # Extracts test count from README and compares with actual
        documented_count = extract_test_count(readme_content)
        assert documented_count == actual_test_count

Benefits

Try It Yourself

# Run documentation validation tests
python -m pytest tests/test_readme_validation.py -v

# Run all tests including documentation checks
python -m pytest tests/ -v

This testing philosophy ensures Symphonic-Joules maintains the highest standards of technical rigor and scientific accuracy.

For comprehensive test documentation, see tests/README.md.


πŸ“ Project Structure

Symphonic-Joules/
β”œβ”€β”€ .github/              # GitHub workflows, issue templates, and CI/CD
β”‚   β”œβ”€β”€ workflows/        # CI/CD workflow definitions
β”‚   β”‚   └── iteration-status-emails.yml  # Automated status notifications
β”‚   └── ISSUE_TEMPLATE/   # Issue templates
β”œβ”€β”€ docs/                 # Comprehensive documentation
β”‚   β”œβ”€β”€ getting-started.md          # Getting started guide
β”‚   β”œβ”€β”€ installation-setup.md       # Detailed installation
β”‚   β”œβ”€β”€ api-reference.md            # API documentation
β”‚   β”œβ”€β”€ architecture.md             # System architecture
β”‚   β”œβ”€β”€ performance-optimization.md # Performance tips
β”‚   β”œβ”€β”€ test-performance-guide.md   # Testing best practices
β”‚   β”œβ”€β”€ iteration-email-setup.md    # Email notification setup
β”‚   β”œβ”€β”€ january-2026-progress.md    # Iteration progress dashboard
β”‚   β”œβ”€β”€ faq.md                      # Frequently asked questions
β”‚   └── examples/                   # Code examples and tutorials
β”œβ”€β”€ src/                  # Source code
β”‚   └── symphonic_joules/ # Main package
β”‚       β”œβ”€β”€ __init__.py   # Package initialization
β”‚       β”œβ”€β”€ audio.py      # Audio processing module
β”‚       β”œβ”€β”€ energy.py     # Energy calculations module
β”‚       └── utils.py      # Utility functions
β”œβ”€β”€ tests/                # Test suite (pytest)
β”‚   β”œβ”€β”€ workflows/        # Workflow tests
β”‚   └── *.py              # Test modules
β”œβ”€β”€ CHANGELOG.md          # Project changelog
β”œβ”€β”€ CONTRIBUTING.md       # Contribution guidelines
β”œβ”€β”€ LICENSE               # MIT License
β”œβ”€β”€ README.md             # This file
β”œβ”€β”€ pytest.ini            # Pytest configuration
β”œβ”€β”€ requirements.txt      # Project dependencies
β”œβ”€β”€ ruff.toml             # Ruff linter configuration
└── setup.py              # Package setup script

πŸ§ͺ Testing

Symphonic-Joules uses pytest for comprehensive testing. Tests ensure code quality, correctness, and prevent regressions.

Running Tests

# Run all tests
python -m pytest tests/ -v

# Run tests with coverage report
python -m pytest tests/ --cov=symphonic_joules --cov-report=html

# Run specific test file
python -m pytest tests/test_readme_validation.py -v

# Run tests matching a pattern
python -m pytest tests/ -k "test_documentation" -v

Test Organization

Coverage Goals

For more details on testing best practices, see docs/test-performance-guide.md.

🀝 Contributing

We welcome contributions from developers, musicians, physicists, and anyone interested in the intersection of sound and energy!

How to Contribute

  1. Fork the Repository - Click the β€œFork” button on GitHub
  2. Create a Branch - git checkout -b feature/your-feature-name
  3. Make Changes - Implement your feature or fix
  4. Write Tests - Add tests for your changes
  5. Run Tests - Ensure all tests pass with pytest
  6. Submit a Pull Request - Provide a clear description of your changes

Contribution Pathways

Guidelines

Read the full Contributing Guidelines for detailed information.

🎯 Roadmap

Our development follows a three-phase approach aligned with scientific methodology:

πŸ—οΈ Phase 1: Foundation (v0.1.0 - Current)

Goal: Establish robust infrastructure and scientific foundations

Deliverable: A solid foundation ready for scientific computation


πŸ”¬ Phase 2: Analysis (v0.2.0 - Planned)

Goal: Implement core acoustic and energy analysis capabilities

Deliverable: Scientifically validated energy analysis from audio signals


πŸ“Š Phase 3: Visualization (v0.3.0 - Planned)

Goal: Enable intuitive exploration of acoustic energy data

Deliverable: Complete toolkit for acoustic energy exploration


πŸš€ Phase 4: Beyond (v1.0.0+)

Future Directions:


Progress Tracking: See our Project Board for real-time development status.

πŸ”¬ Scientific Background

The name β€œSymphonic-Joules” reflects our mission to harmonize:

The Foundation: Acoustic Energy Density

Our core equation, w = p² / (2ρc²) + ρv² / 2, represents the total energy density in an acoustic field:

This equation reveals a profound truth: sound is energy in motion, distributed between compression/rarefaction (potential) and particle movement (kinetic).

Research Areas

This project explores:

  1. Acoustic Energy: How sound waves carry and transform energy through different media
    • Energy propagation in air, water, and solid materials
    • Impedance matching and energy transfer efficiency
  2. Musical Patterns and Energy: Relationships between harmonic structures and energy distributions
    • Frequency-dependent energy distribution in musical instruments
    • Spectral energy analysis of symphonic compositions
  3. Computational Acoustics: Numerical methods for analyzing sound and energy
    • Discrete Fourier Transform (DFT) for frequency-domain analysis
    • Time-frequency representations (spectrograms, wavelets)
  4. Signal Processing: Time-frequency analysis of audio signals
    • Short-Time Fourier Transform (STFT) for non-stationary signals
    • Window functions and their impact on energy measurements
  5. Physics-Informed Computing: Applying physical principles to audio data analysis
    • Conservation of energy in acoustic systems
    • Thermodynamic limits of energy conversion

Scientific Accuracy

All physics calculations are:

Key References

We stand on the shoulders of giants in acoustics and physics.

πŸ“š Documentation

Comprehensive documentation is available in the docs/ directory:

πŸ‘₯ Community

Get Involved

Code of Conduct

We are committed to providing a welcoming and inclusive environment. Please:

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

Key Points



**Thank you for your interest in Symphonic-Joules!** *Where sound meets science, harmony meets energy.* [![Star this repo](https://img.shields.io/github/stars/JaclynCodes/Symphonic-Joules?style=social)](https://github.com/JaclynCodes/Symphonic-Joules)