Symphonic-Joules

API Reference

This document provides detailed API documentation for Symphonic-Joules components.

📋 Overview

The Symphonic-Joules API is organized into several main modules:

Note: Detailed API documentation will be generated and populated as the codebase develops.

🎵 Audio Processing Module

Core Functions

# Example API structure - will be implemented as development progresses

class AudioProcessor:
    """Main class for audio processing operations."""
    
    def __init__(self, sample_rate=44100, channels=1):
        """Initialize audio processor with specified parameters."""
        pass
    
    def load_audio(self, file_path):
        """Load audio file from specified path."""
        pass
    
    def stream_audio(self, file_path, chunk_size=8192):
        """
        Stream audio file in chunks for efficient processing of large files.
        
        Args:
            file_path: Path to audio file
            chunk_size: Number of samples per chunk
            
        Yields:
            Audio chunks as numpy arrays
        """
        pass
    
    def process_signal(self, signal, processing_type='default'):
        """Apply signal processing to audio data."""
        pass
    
    def extract_features(self, signal, features=None):
        """Extract specified features from audio signal.
        
        Args:
            signal: Audio signal data
            features: List of features to extract (default: ['energy', 'frequency'])
        """
        if features is None:
            features = ['energy', 'frequency']
        pass
    
    def calculate_energy(self, signal):
        """Calculate energy of audio signal."""
        pass

Audio Format Support

⚡ Energy Calculations Module

Energy Analysis Functions

# Example API structure - to be implemented

class EnergyCalculator:
    """Class for energy-related calculations."""
    
    def __init__(self, units='joules'):
        """Initialize with specified energy units."""
        pass
    
    def calculate_acoustic_energy(self, signal):
        """Calculate acoustic energy from audio signal."""
        pass
    
    def analyze_energy_distribution(self, data):
        """Analyze energy distribution patterns."""
        pass
    
    def convert_units(self, value, from_unit, to_unit):
        """Convert between different energy units."""
        pass

Supported Calculations

📊 Visualization Module

Plotting Functions

# Example API structure - to be implemented

class Visualizer:
    """Class for creating visualizations."""
    
    def __init__(self, style='default'):
        """Initialize visualizer with specified style."""
        pass
    
    def plot_waveform(self, signal, title='Waveform'):
        """Create waveform visualization."""
        pass
    
    def plot_spectrum(self, signal, title='Frequency Spectrum'):
        """Create frequency spectrum plot."""
        pass
    
    def plot_energy_distribution(self, energy_data, title='Energy Distribution'):
        """Create energy distribution visualization."""
        pass

Chart Types

🛠️ Utilities Module

Helper Functions

# Example API structure - to be implemented

class Utils:
    """Utility functions and helpers."""
    
    @staticmethod
    def validate_audio_file(file_path):
        """Validate audio file format and integrity."""
        pass
    
    @staticmethod
    def convert_sample_rate(signal, original_rate, target_rate):
        """Convert signal sample rate."""
        pass
    
    @staticmethod
    def normalize_signal(signal, method='peak'):
        """Normalize audio signal using specified method."""
        pass

class ResultCache:
    """Cache for storing and retrieving processed results."""
    
    def __init__(self, cache_dir='.cache', max_size=1000):
        """
        Initialize result cache.
        
        Args:
            cache_dir: Directory for cache storage
            max_size: Maximum number of cached items
        """
        pass
    
    def get(self, key):
        """
        Retrieve cached result.
        
        Args:
            key: Cache key (typically file path or hash)
            
        Returns:
            Cached result or None if not found
        """
        pass
    
    def set(self, key, value):
        """
        Store result in cache.
        
        Args:
            key: Cache key
            value: Result to cache
        """
        pass
    
    def clear(self):
        """Clear all cached results."""
        pass

🔧 Configuration

Configuration Options

# Example configuration structure

CONFIG = {
    'audio': {
        'default_sample_rate': 44100,
        'default_channels': 1,
        'buffer_size': 1024,
        'supported_formats': ['wav', 'mp3', 'flac']
    },
    'energy': {
        'default_units': 'joules',
        'precision': 'double',
        'calculation_method': 'standard'
    },
    'visualization': {
        'default_style': 'scientific',
        'color_scheme': 'viridis',
        'figure_size': (10, 6),
        'dpi': 300
    }
}

🚨 Error Handling

Exception Classes

# Example exception structure

class SymphonicJoulesError(Exception):
    """Base exception for Symphonic-Joules."""
    pass

class AudioProcessingError(SymphonicJoulesError):
    """Raised when audio processing fails."""
    pass

class EnergyCalculationError(SymphonicJoulesError):
    """Raised when energy calculations fail."""
    pass

class VisualizationError(SymphonicJoulesError):
    """Raised when visualization creation fails."""
    pass

📝 Usage Examples

Basic Audio Processing

# Example usage - to be implemented

from symphonic_joules import AudioProcessor, EnergyCalculator, Visualizer

# Load and process audio
processor = AudioProcessor()
audio_data = processor.load_audio('input.wav')
processed_audio = processor.process_signal(audio_data)

# Calculate energy
calculator = EnergyCalculator()
energy_data = calculator.calculate_acoustic_energy(processed_audio)

# Visualize results
visualizer = Visualizer()
visualizer.plot_waveform(processed_audio)
visualizer.plot_energy_distribution(energy_data)

Efficient Large File Processing

# Example: Process large audio file efficiently using streaming

from symphonic_joules import AudioProcessor

processor = AudioProcessor()

# ✅ GOOD: Stream processing for large files
for chunk in processor.stream_audio('large_file.wav', chunk_size=8192):
    # Process chunk by chunk, avoiding memory issues
    features = processor.extract_features(chunk)
    energy = processor.calculate_energy(chunk)
    # Process or save results incrementally

# ❌ AVOID: Loading entire large file into memory
# audio_data = processor.load_audio('large_file.wav')  # May cause memory issues

Batch Processing with Caching

# Example: Efficient batch processing with result caching

from symphonic_joules import AudioProcessor, ResultCache
from pathlib import Path

processor = AudioProcessor()
cache = ResultCache(cache_dir='.audio_cache')

def process_audio_library(audio_dir):
    """Process multiple audio files with caching."""
    audio_files = Path(audio_dir).glob('*.wav')
    results = []
    
    for audio_file in audio_files:
        file_id = str(audio_file)
        
        # Check cache first
        cached_result = cache.get(file_id)
        if cached_result is not None:
            results.append(cached_result)
            continue
        
        # Process and cache result
        audio_data = processor.load_audio(audio_file)
        features = processor.extract_features(audio_data)
        energy = processor.calculate_energy(audio_data)
        
        result = {'file': file_id, 'features': features, 'energy': energy}
        cache.set(file_id, result)
        results.append(result)
    
    return results

Parallel Processing

# Example: Process multiple files in parallel

from symphonic_joules import AudioProcessor
from concurrent.futures import ProcessPoolExecutor
import multiprocessing

def process_single_file(file_path):
    """Process a single audio file."""
    processor = AudioProcessor()
    audio = processor.load_audio(file_path)
    return processor.extract_features(audio)

def process_files_parallel(file_paths):
    """Process multiple files in parallel using all CPU cores."""
    num_workers = multiprocessing.cpu_count()
    
    with ProcessPoolExecutor(max_workers=num_workers) as executor:
        results = list(executor.map(process_single_file, file_paths))
    
    return results

# Usage
audio_files = ['file1.wav', 'file2.wav', 'file3.wav', 'file4.wav']
results = process_files_parallel(audio_files)

🔄 Version Compatibility

API versioning and compatibility information will be maintained here as the project evolves.

📚 Additional Resources


Detailed API documentation will be automatically generated from code as development progresses.